This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Aminopyrimidines and Derivatives. 19 ¹. Reaction of 1, 6-Dihydro-4-Beta; D (2, 3, 4, 6-Tetra-0-Acetyl)Glucopyranosylamino-1-Methyl-Z-Methoxy-6-Oxo Pyrimidine with Choracetyl Chloride

Manuel Nogueras^a; Luisa Quijano^a; Miguel Melgarejo^b; Adolfo Sqnchez^a

^a Depto. Quimica OrgQnica., Colegio Universitario, Jaén, Spain ^b Depto. Quimica OrgQnica., Universidad De Granada, Granada, Spain

To cite this Article Nogueras, Manuel , Quijano, Luisa , Melgarejo, Miguel and Sqnchez, Adolfo(1986) 'Aminopyrimidines and Derivatives. 19 1 . Reaction of 1, 6-Dihydro-4-Beta; D (2, 3, 4, 6-Tetra-0-Acetyl)Glucopyranosylamino-1-Methyl-Z-Methoxy-6-Oxo Pyrimidine with Choracetyl Chloride', Nucleosides, Nucleotides and Nucleic Acids, 5: 3, 301 - 312

To link to this Article: DOI: 10.1080/07328318608069979 URL: http://dx.doi.org/10.1080/07328318608069979

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AMINOPYRIMIDINES AND DERIVATIVES. 19^1 . REACTION OF 1,6-DIHYDRO-4- β -D-(2,3,4,6-TETRA-O-ACETYL)GLUCOPYRANOSYLAMINO-1-METHYL-2-METHOXY-6-OXO PYRIMIDINE WITH CHORACETYL CHLORIDE².

Manuel Nogueras, Mª Luisa Quijano, Miguel Melgarejo and Adolfo Sánchez Depto. Química Orgánica. Colegio Universitario. 23071 Jaén. Spain + Depto. Química Orgánica. Universidad De Granada. 18071 Granada. Spain

Abstract: Reaction between 1,6-dihydro-4- β -D-(2,3,4,6-tetra-O-acetyl) glucopyranosylamino-1-methyl-2-methoxy-6-oxo pyrimidine and chloracetyl chloride yields the corresponding 5- α -chloracetyl derivative and 2,6-di oxo-4- β -D-(2,3,4,6-tetra-O-acetyl)glucopyranosylamino-1-methyl-1,2,3,6-tetrahydro pyrimidine. The first compound has been cyclized to the corresponding 7- β -D-glucopyranosyl-pyrrolo[2,3-d]pyrimidine and the second one to 3- β -D-glucopyranosyl-vic-triazolo[4,5-d]pyrimidine.

Pyrrolo[2,3-d]pyrimidines (7-deazapurines) and vic-triazolo[4,5-d] pyrimidines (8-azapurines) are an important class of compounds, structurally and chemically related to naturally nucleosides and some antibiotics $^{3-6}$. The biological activity of such nucleosides is well known and they have been intensively investigated as antitumoral, antiallergiand antiviral agents $^{7-10}$.

Several methods have been described in the literature for the synthesis of 7-deazapurine nucleosides; the most interesting being the phase transfer glycosylation used by F. Seela 11 . The use of this method leads usually to an anomeric mixture. 8-azapurine nucleosides are fundamentally obtained by cyclization of 5-amino-4-glycosylamino pyrimidines with nitrous acid 12 .

Due to the interest of this class of compounds and following our previous works on reactivity and synthetic applications of 4-glycosylamino pyrimidines 13 , the reaction of 1,6-dihydro-4- β -D-(2,3,4,6-tetra-0

-acetyl)glucopyranosylamino-l-methyl-2-methoxy-6-oxo pyrimidine $\frac{1}{2}$ with chloracetyl chloride has been carried out. Appropriates intermediates for cyclization to 7-glycosyl-pyrrolo[2,3-d]pyrimidines 14 and 3-glycosyl-vic-triazolo[4,5-d]pyrimidines has been obtained.

The reaction of $\underline{\underline{l}}$ with fresh distilled C1COCH $_2$ C1, in anhydrous ethyl acetate, produces a precipitate (43%) identified as: 2,6-dioxo-4- β -D-(2,3,4,6-tetra-0-acetyl)glucopyranosylamino-1-methyl-1,2,3,6-tetrahydro pyrimidine $\underline{\underline{3}}$. On the other hand 5- α -chloracetyl-1,6-dihydro-4- β -D-(2,3,4,6-tetra-0-acetyl)glucopyranosylamino-1-methyl-2-methoxy-6-oxo pyrimidine $\underline{\underline{2}}$ (42%) was isolated from the mother liquors. The estructure of $\underline{\underline{3}}$ has been confirmed by acid hidrolysis of $\underline{\underline{l}}$ with HCl in HCCl $_{\underline{3}}$.

In the $^1\text{H-NMR}$ (table 1) of compound ^1L , the signal assigned to ^1L C₄N-H (10.9 ppm, doublet, ^1L J $_{\text{NH},1}$ = 8.2 Hz) appears shifted downfield compared with the corresponding signal in the spectrum of its precursor ^1L (5.7 ppm, doublet, ^1L J $_{\text{NH},1}$ = 9 Hz). This shift is attributed to the six membered hydrogen bond formed between ^1L and ^1L Groups, as shown in Scheme 1.

Compound $\underline{2}$, is formed by electrophilic aromatic substitution on C-5 of the pyrimidine ring. The HCl molecule reacts with the CH₃-O-C₂ group, yielding HCCl₃ and produce $\underline{3}$. This has been evidences by the easy hydrolysis of 2-methoxy pyrimidines in acidic medium¹⁵, as well as in hot water¹⁶.

The selective de-O-acetylation of $\frac{3}{2}$ and $\frac{3}{2}$ has been carried out with molar amount of sodium methoxide in methanol at room temperature, yielding: $5-\alpha$ -chloracetyl-1,6-dihydro-4- β -D-glucopyranosylamino-1-methyl-2-methoxy-6-oxo pyrimidine $\frac{4}{2}$ and 2,6-dioxo-4- β -D-glucopyranosylamino-1-methyl-1,2,3,6-tetrahydro pyrimidine $\frac{5}{2}$ respectively, in high yield.

This method allows to obtain the nucleoside $\underline{5}$, impossible to obtain by direct condensation between 4-amino-l-methyl uracile and glucose, $\underline{5}$ is intermediate in the syntheses of interesting compounds, such as $\underline{8}$ and others $\underline{17}$.

The intermediates $\frac{2}{2}$, $\frac{3}{2}$, $\frac{4}{2}$ and $\frac{5}{2}$ are structural analogues to other nucleosides showing antitumoral and antiviral activities 18 . The probable biological activity of the above compounds is being studied 19 .

201
January
27
09:20
At:
Downloaded

		Tai	ble 1 1#	-NMR DATA.	Table 1 ¹ H-NMR DATA. 6(ppm). J(Hz).INTERNAL. STANDARD He _L Si	INTERNAL. STA	NDARD Me, Si		
Compound	Solvent	NNe	0#e	H-5	C4 N-Ha (J1', NH)	COCH2	N3-Ha	(11,21)	Ac0
-1	00013	3,3 s	s 0.4	5,3 s	5,7 d (9)	1		5,2-5,4	2,1 s 12Н
	(c0 ³) ⁵ 80	3,2 s	4°0 s	5,2 s	7,6 d (9)	-	ţ	5,3-5,7	2,0 s 12H
2	00013	3° 3° 8°	4,1 s	1	10,9 d(8,2)	s 6'4	1	5,9 m +D ₂ 0 d(8,2)	2,0 s 12H
	(co³) ² so	3,2 s	4,1 s		10,6 d(8,2)	s 6,4	1	5,9 st +D ₂ 0 d(8,2)	2,0 s 12H
က	(c0 ³) ⁵ 80	3,0 s	1	4,9 s	6,8 d(8,2)	1	10,3 s broad	5,3 m +0 ₂ 0 d(8,2)	2,0 s 12H
4	(c0 ³) ⁵ 80	3,2 s	4°0 s	1	10,7 d(8,2)	4,9 s	-	5,3 m +D ₂ 0 d(8,2)	!
S	(co ³) ⁵ 80	3,1 s	ı	8 + 4	6,8 d(8,2)	-	10,3 s broad	4,4 m +0 ₂ 0 d(8,2)	-
g	coc1 ₃	3,4 s	s 2,4		1	4,0 ^a s (C ₆ -H ₂)	-	5,6 d(8,2)	2,0 s 12H
	(c03)50	3,2 s	4,2 s	1	1	3,9 s (C ₆ -H ₂)	1	5,9 d(8,2)	2,0 s 12H
7	(co ³) ⁵ 80	3,2 s			1	-	q	6,1 d (9)	1,8 s 12H 2,0 s
80	(c03)280	3,1 s		1		1	h-4H)	5,3 d (9)	!

a) Protons exchangeable by D; b) These signals are included in that of H_2^0 remaining in the $(CD_3)_2^0$ SO; s = Singlet; d = Doublet; st = Pseudo-triplet; m = Multiplet.

$$\begin{array}{c} CH_{3} \\ CH_{3$$

SCHEME 1

Cyclization of $\frac{2}{2}$ to 4,5-dioxo-7- β -D-(2,3,4,6-tetra-0-acetyl)gluco-pyranosyl-3-methyl-2-methoxy-3,4,5,6-tetrahydro-pyrrolo[2,3-d]pyrimidine $\frac{6}{2}$ has been carried out with anhydrous $K_2^{\text{CO}}_3$ in DMF at 70 °C. This procedure is similar to that reported in the literature $\frac{14}{2}$ for other 4-amino-5- α -chloracetyl pyrimidines.

SCHEME 2

In the $^1\text{H-NMR}$ spectra of $\underline{6}$, does not appear any signal for C_4 -NH (table 1). The signal for the methylenic protons in C-6 is changed by deuterium on adding D_2O . The enolic forme may account for this fact.

The compound 5,7-dioxo-3- β -D-(2,3,4,6-tetra-0-acetyl)glucopyranosyl-6-methyl-4,5,6,7-tetrahydro-vic-triazolo[4,5-d]pyrimidine $\frac{7}{2}$ has been obtained from $\frac{5}{2}$ by successive treatments with NaNO₂/HOAc, (NH₄)₂S (10% aqueous solutions), NaNO₂/HOAc, and finally Ac₂O/Py; none of the intermediates were isolated.

The selective de-O-acetylation of $\frac{7}{2}$ using molar amount of sodium methoxide in methanol yields 5,7-dioxo-3- β -D-glucopyranosyl-6-methyl-4, 5,6,7-tetrahydro-vic-triazolo[4,5-d]pyrimidine $\underline{8}$.

The β -configuration of the sugar moieties in all compounds has been confirmed by the value of the coupling constants $J_{1,2}$, of the anomeric protons (table 1) and by the chemical shifts of the anomeric proton and carbon. The α -anomers have not been detected in the crystalline products.

EXPERIMENTAL

Melting points were determined in a Melting Point Apparatus Gallem kamp and are uncorrected. Proton nuclear magnetic resonance spectra were recorded with a Hitachi Perkin-Elmer R-600 Spectrometer. Carbon-13 nuclear magnetic resonance spectra were recorded with a Bruker WP 805 Spectrometer. Specific rotation values were determined with a Polarimeter Perkin-Elmer 141. Ultraviolet spectra were recorded with a Model 25 Spectrophotometer Beckman. Infrared spectra with a Spectrophotometer Beckman 4250 (KBr pellets). The analysis of C, H and N have been performed in "Instituto Nacional de Química Orgánica" in Madrid. Thin layer chromatogrphy (TLC) was runned on silica gel Merck 60 G, using chloroform/hexane/ethanol (8:1:0.5) as eluent. Compound ½ was prepared following the published method 13.

Reaction of 1 with chloracetyl chloride.

To a solution of $\frac{1}{2}$, 4.8 g (0.01 mmol) in 100 mL of anhydrous ethyl acetate, 0.81 mL (0.01 mmol) of freshly distilled C1COCH₂Cl were added. The mixture was stirred under reflux for 5 h. At the end of this time a white solid precipitated which was filtered hot, washed with ethyl acetate and recristallized from DMSO/H₂O. This compound was identified as: 2,6-dioxo-4- β -D-(2,3,4,6-tetra-0-acetyl)glucopyranosylamino-1-methyl-1, 2,3,6-tetrahydro pyrimidine $\frac{3}{2}$. 2.03 g (43%); M.P.:280-5°C; [α]_D =-14.3° (c 1, DMSO). U.V. (4.5x10⁻⁵M, H₂O): λ _{max}: 264 (ϵ 27200) and 201 (ϵ 20400) nm. I.R.: \forall (cm⁻¹): 3270 m, 1760 s, 1715 s, 1690 s, 1600 s, 1570 s, 1375 m, 1250-1210 s broad, and 1035 s. 1 H-NMR see table 1. 13 C-NMR see table 2. Anal. Calcd. for C₁₉H₂₅N₃O₁₁: C, 48.41; H, 5.34; N, 8.91. Found: C, 48.24; H, 5.27; N, 8.82.

The mother liquors were neutralized with a saturated solution of NaHCO $_3$, washed with water, dried over CaCl $_2$ and evaporated under reduced pressure. The syrupy residue was crystallized from EtOH/AcOET (2:1) and recrystallized from DMSO/H $_2$ O. The compound obtained was identified as: $5-\alpha$ -chloracetyl-1,6-dihydro-4- β -D-(2,3,4,6-tetra-0-acetyl)glucopyrano-sylamino-1-methyl-2-methoxy-6-oxo pyrimidine 2. 2.36 g (42%).

M.P.: 205-7 °C. $[\alpha]_D^{20}$ = 4° (c 1, HCCl $_3$). U.V. $(4\times10^{-5}$ M, H $_2$ 0): λ_{max} : 272 (ϵ 8000) and 227 (ϵ 18700) nm, $(5.16\times10^{-5}$ M, MeOH): λ_{max} : 226 (ϵ 38000), 263 (shoulder) and 290 (ϵ 15300) nm. I.R.: $\nu(\text{cm}^{-1})$: 3200 w, 1755 s, 1730 s, 1675 s, 1635 s, 1600 s, 1565 s, 1375 m, 1240 s, 1210 s, 1070 m, 1035 s. 1 H-NMR see table 1. 1 C-NMR see table 2. Anal. Calcd. for 1 C2 1 H28 1 C1: C, 47.03; H, 5.03: N, 7.47. Found: C, 47.10; H, 4.75; N, 7.31.

 $\frac{5-\alpha-chloroacetyl-1,6-dihydro-4-\beta-D-glucopyranosylamino-l-methyl-2-methoxy-6-oxo~pyrimidine~4.$

To a suspension of 1.12 g (2 mmol) of $\underline{2}$ in 20 mL of MeOH, 2 mL (2 mmol) of 1 M solution of sodium methoxide in methanol was added, the mix ture was stirred during 1 h at room temperature. Then the precipitate was filtered off. This compound was recrystallized fron DMSO/EtOH. 0.65 g (82%). M.P.: $\det[\alpha]_{D}^{20} = 30.4^{\circ}$ (c 1, DMSO). U.V. $(6.3 \times 10^{-5} \text{ M, H}_{2}\text{O})$: λ_{max} : 290 (ϵ 10700), 227 (ϵ 26600) and 201 (ϵ 11600) nm; (5.33×10⁻⁵ M, MeOH): λ_{max} : 226 (ϵ 31000), 264 (shoulder) and 294 (ϵ 11300) nm. I.R.: ν

Downloaded At: 09:50 27 January 2011

TABLE 2. ¹³C-NNR DATA, 6(ppm), IMTERNAL STANDARD Me₄Si

61,9 20,5 61,9 20,5 61,9 51,1 190,3 20,2 61,8 20,3 60,8 20,3 61,7 53,1 189,5 20,6 61,7 20,3 61,7 20,3 61,7 20,3 60,9										C-2', C-3'					
$ (cp_3)_2 S_0 27,1 55,4 159,4 157,9 82,7 163,6 81,2 73,0 61,9 20,5 \\ 86,5 \\ (cp_3)_2 S_0 27,1 56,6 161,7 157,8 93,6 162,8 77,9 77,3 61,9 51,1 190,3 20,2 \\ 86,1 \\ (cp_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (cp_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (cp_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (cp_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (cp_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (cp_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,7 \\ (cp_3)_2 S_0 27,2 152,3 150,8 82,2 163,3 79,6 61,7 20,3 \\ (cp_3)_2 S_0 27,2 156,2 152,6 152,6 158,7 79,6 60,9 20,3 \\ (cp_3)_2 S_0 27,2 158,4 152,4 152,7 158,6 83,4 79,6 60,9 \\ (cp_3)_2 S_0 27,3 158,4 152,4 122,7 158,6 83,4 79,6 60,9 \\ (cp_3)_2 S_0 27,3 158,4 152,4 122,7 158,6 83,4 79,6 60,9 $	punoduo	Solvent	¥.	ONe	C-2	7 -0	C-5	g3	C-1.	C-4', C-5'		COCH ₂	COCH 2	Me CO	MeC0
$ (c_{03})_{2}^{5} S_{0} 27,1 56,6 161,7 157,8 93,6 162,8 77,9 72,3 61,9 51,1 190,3 20,2 \\ (c_{03})_{2}^{5} S_{0} 27,1 56,6 161,7 157,8 93,6 162,8 77,9 72,3 61,9 51,1 190,3 20,2 \\ (c_{03})_{2}^{5} S_{0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{03})_{2}^{5} S_{0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{03})_{2}^{5} S_{0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{03})_{2}^{5} S_{0} 27,2 152,3 150,8 82,2 163,3 79,6 74,0 61,7 $ $ (c_{03})_{2}^{5} S_{0} 27,2 159,2 152,8 152,8 159,3 79,7 61,7 20,3 61,7 20,3 61,7 20,3 61,7 20,3 61,7 20,3 61,7 20,3 61,7 $	1	CDC1,	1,75	55,4	159,4	157,9	82,7	163,6	81,2	73.0	61,9		;	20,5	170,5
$ (c_{D_3})_2^{S_0} 27,1 56,6 161,7 157,8 93,6 162,8 77,9 77,9 77,3 61,9 51,1 190,3 20,2 $ $ (c_{D_3})_2^{S_0} 28,1 151,6 150,7 79,5 163,3 75,8 72,7 61,8 20,3 $ $ (c_{D_3})_2^{S_0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{D_3})_2^{S_0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{D_3})_2^{S_0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{D_3})_2^{S_0} 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (c_{D_3})_2^{S_0} 27,2 152,3 150,8 82,2 163,3 77,8 77,6 61,7 20,3 61,7 20,3 (c_{-5}) (c_{-5}) (c_{-7a}) (c_{-7$,								72,9				20,4	170,4
$ (co_3)_2 S_0 27,1 56,6 161,7 157,8 93,6 162,8 77,9 72,3 61,9 51,1 190,3 20,2 \\ $										70,6					169,8
$ (co_3)_2 S_0 27,1 56,6 161,7 157,8 93,6 162,8 77,9 72,3 61,9 51,1 190,3 20,2 \\ (co_3)_2 S_0 26,1 151,6 150,7 79,5 163,3 75,8 72,7 61,8 20,3 \\ (co_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (co_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (co_3)_2 S_0 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 \\ (co_3)_2 S_0 27,2 152,3 150,8 82,2 163,3 77,8 77,2 60,8 \\ (co_3)_2 S_0 27,2 152,3 150,8 82,9 169,3 79,6 74,0 61,7 53,1 189,5 20,6 68$										68,5			•		169,3
$ (c_0)_2 S_0 = 26.1 151.6 150.7 79.5 163.3 75.8 75.8 72.7 61.8 20.3 $ $ (c_0)_3 S_0 = 27.2 56.5 162.1 157.7 93.1 163.1 80.9 79.1 61.0 51.3 190.3 $	2	05'('02)	27,1	56,6	161,7	157,8	93,6	162,8	77,9	72,3	61,9	51,1	190,3	20,2	169,2
$ (co_3)_2 So = 26.1 - 151.6 150.7 79,5 163.3 75.8 75.7 61.8 20,3 $ $ (co_3)_2 So = 27.2 56.5 162.1 157.7 93,1 163.1 80.9 79,1 61.0 51,3 190.3 66,1 70,1 $		J								70.0					169,5
$ (co_3)_2 So ze, 1 151,6 150,7 79,5 163,3 75,8 72,7 61,8 20,3 \\ $										68,3					169,9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ო	os'('ao)	26,1	}	151,6	150,7	79,5	163,3	75.8	72,7	61,8	۱	 	20,3	170,0
$ (c_{03})_{2} S_{0} = 27, z = 56, S = 162, 1 = 157, 7 = 93, 1 = 163, 1 = 80, 9 = 79, 1 = 61, 0 = 51, 3 = 190, 3 =$		7								71,8					169,6
$ (c_{03})_{2} S_{0} z_{7,2} 5_{6,5} 16_{2,1} 157,7 93,1 163,1 80,9 79,1 51,0 51,3 190,3 $ $ (c_{03})_{2} S_{0} z_{6,1} 15_{2,3} 15_{0,6} 8_{2,2} 16_{3,3} 77,8 77,2 60,8 $ $ (c_{03})_{2} S_{0} z_{6,1} 15_{2,3} 15_{0,6} 82,2 16_{3,3} 77,8 77,2 60,8 $ $ (c_{03})_{2} S_{0} z_{7,2} 15_{0,1} 16_{1,6} 15_{0,3} 16_{0,3} $										70,2					169,4
$ (co_3)_2 So 27,2 56,5 162,1 157,7 93,1 163,1 80,9 79,1 61,0 51,3 190,3 $ $ (co_3)_2 So 26,1 152,3 150,8 82,2 163,3 77,8 77,2 60,8 $ $ (coc_1)_3 27,3 57,0 161,6 156,3 95,9 169,3 79,6 74,0 61,7 53,1 189,5 20,6 $										68,1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J.	05 (603)	27,2	56,5	162,1	157,7	93,1	163,1	80,9	79,1	61,0	51,3	190,3	:	
$ (CD_3)_2 SO 26.1 152.3 150.8 82.2 163.3 77.8 77.2 60.8 $,								77,6					
$ (\text{CD}_3)_2 \text{SO} 26,1 152,3 150,8 82,2 163,3 77,8 77,2 60,8 \\ 75,0 72,9 72,9 72,9 69,9 69,9 72,9 69,9 73,2 (\text{C-6}) (\text{C-5}) (\text{C-7a}) (\text{C-4a}) (\text{C-4}) (\text{C-4}) (\text{C-4}) (\text{C-4}) (\text{C-4}) (\text{C-4}) (\text{C-5}) (\text{C-7a}) (\text{C-7a}) (\text{C-7a}) (\text{C-7a}) (\text{C-7a}) (\text{C-7a}) (\text{C-7a}) (\text{C-7a}) (\text{C-6}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-5}) (\text{C-7a}) ($										73,1					
$ (CD_3)_2 SO 26,1 152,3 150,6 82,2 163,3 77,8 77,2 60,8 $!		70,1					
CDC1 3 27,3 57,0 161,6 156,3 95,9 169,3 79,6 74,0 61,7 53,1 189,5 20,6 (C-5) (C-7a) (C-4a) (C-4) 73,2 (C-6) (C-5) 68,6 68,0 (C-5) (C-3) (C-3a) (C-7a) 69,0 61,7 20,3 (C-7a) (C-7a) (C-7a) (C-7a) 69,0 61,7 20,0 (C-5) (C-3a) (C-7a)	5	05'("00)	26,1	†	152,3	150,8	82,2	163,3	77,8	17.2	8,09	1	1		;
72,9 69,9 (69,9 (C-7a) (C-7a) (C-4a) (C-4) (C-7a) (C-4a) (C-4) (C-7a) (C-4a) (C-4) (C-7a) (C-4a) (C-4) (C-7a) (C-7a) (C-4a) (C-4) (C-7a) (C-7a) (C-4a) (C-4) (C-7a) (C-7a) (C-7a) (C-7a) (C-6) (C-5) (C-6) (C-5) (C-7a) (C-		u 7								75.0					
CDC1 ₃										72,9					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										69.9					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		c0C1,	27,3	57,0	161,6	156,3		169,3	ŀ	74.0	61,7	53,1	189,5	20,6	173,5
68,6 68,0 (C ₃) 25 27.2 158,2 152,6 122.4 168,3 79,7 73,0 61.7 20,3 (C-5) (C-3a) (C-7a) (C-7) 69,0 67,7 (C ₃) 20 27.3 158,4 152,4 122,7 158,6 83,4 79,6 (C-5) (C-3a) (C-7a) (C-7) 77,6 69,9		າ				(c-7a)		(6-4)		73,2		(C-6)	(6-5)		170,5
(CD ₃) ₂ SO 27.2 158,2 152,6 122.4 168,3 79,7 73,0 61.7 20,3 (C-5) (C-3a) (C-7a) (C-7) 69,0 67,7 67,7 (CD ₃) ₂ SO 27.3 158,4 152,4 122,7 158,6 83,4 79,6 60,9 (C-5) (C-3a) (C-7a) (C-7) 77,6 70,7 69,9										9,89					170,1
										68,0					
(CD ₃) 20 27.3 158.4 152,4 122.7 158.6 83,4 79.6 60.9 (C-5) (C-3a) (C-7a) (C-7) 69.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	7	05"("00)	27.2		158,2	152,6	122,4	168,3	79.7	73,0	61,7			20,3	170,1
(CD ₃) ₂ SO 27.3 158,4 152,4 122,7 158,6 83,4 79,6 60,9 (C-5) (C-3a) (C-7a) (C-7) 77,6 70,7 70,7 69,9		7 0			(6-5)	(C-3a)	(C-7a)	(5-2)		0'69				20,0	159,6
$(c0_3)_2$ 50 27.3 158,4 152,4 122,7 158,6 83,4 79,6 60,9 (C-5) (C-3a) (C-7a) (C-7) 77,6 70,7 70,7 6.9			!							67,7					169,3
(C-5) (C-3a) (C-7a) (C-7)	80	05 (້າລ)	27.3	:	158,4	152,4	122,7	158,6	83,4	79,6	6'09	;	1	;	1
		7			(c-s)	(C-3a)	(C-7a)	(2-2)		77,6					
6'69										70,7					
										6,69					

 (cm^{-1}) : 3560-3180 s broad, 1655 s, 1625 s, 1590 m, 1565 s, 1230 m, 1080 s , 1035 s. 1 H-NMR see table 1. 13 C-NMR see table 2. Anal. Calcd. for c_{14} H $_{20}$ N $_{3}$ 0 $_{8}$ C1: C, 42.70; H, 5.12; N, 10.67. Found: C, 42.83; H, 4.97; N, 10.39.

 $2,6-dioxo-4-\beta-D-glucopyranosylamino-l-methyl-1,2,3,6-tetrahydro pyrimidine 5.$

To a suspension of 1.89 g (4mmol) of $\frac{3}{2}$ in 50 mL of MeOH, 4 mL (4 mmol) of 1 M solution of sodium methoxide in methanol was added. The mix ture was stirred for 5 h at room temperature, neutralized with acetic acid and then evaporated under reduced pressure. The syrupy residue was crystallized fron water with active charcoal. 0.9 g (74%); M.P.: dec., [α] $_{D}^{20}$ = -56° (c 1, DMSO). U.V. (1.02x10⁻⁴ M, H $_{2}$ 0): λ_{max} : 266 (ϵ 15900) and 202 (ϵ 10200) nm. I.R.: ν (cm⁻¹): 2940-2840 s broad, 1720 s, 1640 s, 1595-1560 s broad, 1460 s, 1355 m, 1295 m, 1115 m, 1095 m, 1075 s, 790 m. ¹H-NMR see table 1. 13 C-NMR see table 2. Anal. Calcd. for $C_{11}H_{17}N_{3}O_{7}$: C, 43.56; H, 5.65; N, 13.85. Found: C, 43.72; H, 5.93; N, 13.72.

 $\frac{4,5-\text{dioxo-}7-\beta-D-(2,3,4,6-\text{tetra-0-acetyl})\text{glucopyranosyl-1-methyl-2-}}{3,4,5,6-\text{tetrahydro-pyrrolo}[2,3-d]\text{pyrimidine}}\ \underline{6}.$

1.1g (2 mmol) of $\frac{2}{2}$ was added to 5 mL of DMF. To this solution 0.28 g (2 mmol) of anhydrous K $_2$ CO $_3$ was added. The reaction mixture was stirred for 90 minutes at 70 °C, then, the mixture poured into cold water and extracted with HCCl $_3$ (15 mL, five times). The organic layer was washed with water, dried over anhydrous Na $_2$ SO $_4$ and evaporated under reduced pressure. The syrupy residue was crystallized from EtOH/ether/hexane and recrystallized from EtOH with active charcoal. 0.78 g (75%); M.P.: 193-5 °C;[α] $_0^{20}$ = -10° (c 1, HCCl $_3$). U.V. (5.3x10 $^{-5}$ M, H $_2$ 0): $\lambda_{\rm max}$: 290 (ϵ 8100), 262 (ϵ 6300), 231 (ϵ 32100) and 200 (ϵ 14200) nm. I.R.: ν (cm $^{-1}$): 3600 - 3400 w broad, 1750 s, 1730 s, 1665 m, 1580 s, 1545 s, 1525 s, 1235 s, 1040 m. 1 H-NMR see table 1. 13 C-NMR see table 2. Anal. Calcd. for 13 C2H $_2$ 7N $_3$ 01 $_2$: C, 50.29; H, 5.18; N, 7.99. Found: C, 49.99; H, 5.20; N, 7.60.

 $5,7-\text{diox}o-3-\beta-D-(2,3,4,6-\text{tetra}-0-\text{acetyl})$ glucopyranosyl-6-methyl-4,5,6,7-tetrahydro-vic-triazolo[4,5-d]pyrimidine 7.

To 15 mL of a solution of $\frac{5}{2}$, in hot water (0.6 g, 2 mmol), 0.14 g (2 mmol) of NaNO₂ and acetic acid (0.12 g, 2 mmol) were successively

added. The resulting solution was evaporated under reduced pressure, yiel ding a red syrupy, which was dissolved in 3 mL of 10% $(NH_4)_2S$ aqueous so lution. This solution was stirred during 15 minutes at 60 °C. At this point the solution became decolorated, and then was evaporated under reduced pressure. 10 mL of boiling water were added to the solid residue and then filtered. After this, 4 mmol of $NaNO_2$ and 4 mmol of acetic acid were added to the resulting solution. The mixture was concentrated and the water eliminated by adding methanol and evaporating several times. The dry residue was directly acetylated by adding 10 mL of acetic anhydride and 10 mL of pyridine and stirring for 24 h at room temperature. The solution was evaporated at reduced pressure. The excess of solvents were removed by dissolving in methanol and evaporating several times. The final product was crystallized from ethanol with active charcoal. 0.86 g (88%); M.P.: 200 °C; $[\alpha]_D^{20} = -9.9^{\circ}$ (c 1, DMS0). U.V.: (4.6×10^{-5}) M, H₂0): λ_{max} : 279 (ϵ 9100), 255 (ϵ 7500) and 214 (ϵ 15800) nm. I.R.: \vee (cm^{-1}) : 3440 m broad, 1750 s, 1690 s, 1590 s, 1365 m, 1235 s, 1205 m, 1075 m, 1035 m, 905 m. $^{1}\mathrm{H-NMR}$ see table 1. $^{13}\mathrm{C-NMR}$ see table 2. Anal. Calcd. for $C_{19}H_{23}N_5O_{11}$: C, 45.87; H, 4.66; N, 14.08. Found: C, 44.65; H, 4.68; N, 14.41.

$5,7-dioxo-3-\beta-D-glucopyranosyl-6-methyl-4,5,6,7-tetrahydro-victriazolo[4,5-d]pyrimidine 8.$

0.98 g (2 mmol) of $\frac{7}{2}$ were dissolved in 10 mL of methanol. then 2 mL (2 mmol) of 1 M solution of sodium methoxide in methanol were added. The mixture was stirred at room temperature during 12 h. The solid precipital ted was filtered and washed with ethanol and ether. this compound was recrystallized from ethanol/methano (1:1). 0.56 g (85%); M.P.: dec., $\left[\alpha\right]_{D}^{20} = -13.7^{\circ}$ (c 1, DMSO). U.V. $(6.2 \times 10^{-5} \text{ M, H}_{2}\text{O})$: λ_{max} : 277 (ϵ 8000), 252 (ϵ 6700) and 214 (ϵ 14800) nm. I.R.: $\nu(\text{cm}^{-1})$: 3550-3200 m broad, 1680 s, 1620 s, 1580 s, 1510 m, 1290 m, 1270 m, 1080 m, 1075 m, 1060 m, 780 m. $^{1}\text{H}_{-}\text{NMR}$ see table 1. $^{13}\text{C}_{-}\text{NMR}$ see table 2. Anal. Calcd. for $c_{11}^{\text{H}}_{15}^{\text{N}}_{5}^{\text{O}}_{7}$: C, 40.12; H, 4.59; N, 21.27. Found: C, 40.08; H, 5.12; N, 21.45.

REFERENCES

 For Part 18 see: A. Sánchez, M. Nogueras, J. Colmenero, R. Asenjo and M. Melgarejo, <u>Heterocycles</u>, <u>23(8)</u>, 1961 (1985)

- 2. This paper has been presented in part in the "IV European Symposium in Organic Chemistry" (Aix-en-Provence, France, 1985).
- F. Seela, H.D. Winkeler, J. Ott, Q.H. Tran-thi, D. Hasselmann, D. Franzen and W. Buβmann, "Nucleosides, Nucleotides and Their Biological Applications" (J.L. Rideout, D.W. Henry and L.M. Beachan III, eds.), p. 181. Academic Press Inc., New York, 1983
- 4. R.L. Tolman, R.K. Robins and L.D. Townsend, <u>J. Amer. Chem. Soc.</u>, <u>90</u>, 524 (1968)
- 5. H. Kosai, Z. Ohashi, F. Harada, S. Nishimura, N.J. Oppenheimer, P.F. Crain, J.G. Liehr, D.L. von Minden and J.A. Mc Closkey, <u>Biochemistry</u>, 14, 4198 (1975). T. Ongi, T. Kondo and T. Goto, <u>J. Amer. Chem. Soc.</u>, 101, 3629 (1979)
- 6. K. Anzai and S. Suzuki, <u>J. Antibiotics Japan A</u>, <u>14</u>, 253 (1961). Jap. Pat. 25298 (63); <u>Chem Abs.</u>, <u>60</u>, 7415; K. Anzai, J. Nagatsu and S. Suzuki, <u>J. Antibiotics Japan A</u>, <u>14</u>, 340 (1961); K. Anzai, J. Nagatsu and S. Suzuki, <u>J. Antibiotics Japan A</u>, <u>15</u>, 109 (1962); R. J. Suhadolnik, "Nucleoside Antibiotics". Wiley Intercience. New York, 1970
- 7. J. A. Montgomery and H.J. Thomas, "Proc. 4th Internat. Symp. Quantum Chemistry and Biochemistry" (E.D. Bergmann and B. Pullman eds.) p. 446. Academic Press. Jerusalem 1972
- 8. L.B. Townsend and G.H. Milne, "Chemistry, Biology and Clinical Uses of Nucleoside Analogs" (A. Bloch ed.) p. 91. An. New York Academy of Siences, 225 (1975)
- 9. W. Hutzenlaub, R.L. Tolman and R.K. Robins, <u>J. Medicin. Chem.</u>, $\frac{15}{2}$, 879 (1972)
- C.W. Smith, R.W. Sidwell, R.K. Robins and R.L. Tolman, <u>J. Medicin</u>. <u>Chem.</u>, <u>15</u>, 883 (1972)
- 11. F. Seela und H. Driller, <u>Liebigs Ann. Chem.</u>, <u>1984</u>, 722; F. Seela, D. Hasselmann und H.D. Winkeler, <u>Liebigs Ann. Chem.</u>, <u>1982</u>, 499; H.D. Winkeler und F. Seela, <u>Liebigs Ann. Chem.</u>, <u>1984</u>, 708; F. Seela und U. Liman, <u>Liebigs Ann. Chem.</u>, <u>1984</u>, 273; F. Seela und J. Steker, <u>Liebigs Ann. Chem.</u>, <u>1984</u>, 1719.
- S. Gabriel and J. Colman, <u>Ber.</u>, <u>34</u>, 1234 (1901); J. Davoll, <u>J. Chem. Soc.</u>, <u>1958</u>, 1593; W. Pfleiderer and E. Bühler, <u>Chem. Ber.</u>, <u>99</u>, 3022 (1966); R. Asenjo, M. Melgarejo, M. Nogueras, M. Rodriguez, C. Rodriguez and A. Sánchez, <u>Nucleosides & Nucleotides</u>, <u>3(2)</u>, 207 (1966).

13. R. Asenjo, M. Melgarejo, C. Rodriguez, M. Nogueras and A. Sánchez, An. Quím., 79C, 417 (1983); M. Nogueras, A. Sánchez, R. Asenjo, M. Melgarejo, M. Rodriguez and C. Rodriguez, An. Quím., 80C, 234 (1984); Heterocycles, 22, 1555 (1984); An. Quím., In Press; A. Sánchez, M. Nogueras, J. Negrillo, L. Gonzalez, M. Melgarejo and C. Rodriguez, Ars. Pharmaceut. In Press.

- 14. C.W. Noell, R.K. Robins, <u>J. Heterocyclic Chem.</u>, <u>1</u>, 34 (1964); V. Armarnath and R. Madhav, <u>Synthesis</u>, <u>1974(12)</u>, 837
- 15. D.J. Brown "The Pyrimidines", John Wiley and Sons. New York 1962 and "Supplement I", 1970; M. Melgarejo, C. Rodriguez, M. Nogueras and A. Sánchez, An. Quím., 78C, 399 (1982)
- 16. J.M. Salas, M. Moreno, M. Nogueras and A. Sánchez, <u>An. Quím., 79B</u>, 547 (1983)
- 17. Ma.L. Quijano, Thesis of Licenciatura. Universidad de Granada (1985)
- 18. P.F. Torrence, "Anticander and Interferon Agents. Synthesis and Properties" (RmM. Ottenbrite, G.B. Butler eds.) p. 113. Marcel Dekker, Inc. New York 1984
- 19. This compounds have been sent to the National Cancer Institute of Brussels to study their activity as anticancerogenic agents. (NCS: 607159 (4) and 607160 (5))

Received November 21, 1985.